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Abstract

Background

The diagnosis of sickle cell disease (SCD) is made by hemoglobin assays such as high-per-

formance liquid chromatography (HPLC), isoelectric focusing and cellulose acetate or cit-

rate agar electrophoresis. These assays are easy to perform and used in large-scale

newborn screening in many countries. These tests however may not easily differentiate Sβ0

thalassemia from SS or identify other hemoglobin variants, and in this case, hemoglobin

(HBB) gene sequencing may be necessary.

Objectives

To develop a high throughput DNA based confirmatory assay for SCD and to detect muta-

tions in the HBB gene

Methods

We developed an automated pyrosequencing technique (PyS) based on QIAGEN technol-

ogy (Hilden, Germany) to detect homozygous or heterozygous hemoglobin S mutations as

well as hemoglobin C mutations. The technique was tested on 2,748 samples from patients

enrolled in a multi-center SCD cohort in Brazil. Patients were previously tested using HPLC

to diagnose SCD as part of routine clinical care. Any subjects with discrepant results

between HPLC and PyS or with heterozygous hemoglobin S detected had Sanger sequenc-

ing of the HBB gene.
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Results

We identified 168 samples with discrepant results between HPLC and PyS and 100 with

concordant PyS = heterozygous S and HPLC, which would suggest SB-thalassemia or

other heterozygous S variants. The PyS assay correctly identified 1906 (98.7%) of the 1930

HbSS and 628 (98.7%) of the 636 HbSC samples. Of the 179 remaining samples, PyS cor-

rectly indicated S heterozygosis in 165 (92.2%). Of the 165 heterozygous S samples con-

firmed by Sanger as consistent with Sβ thalassemia genotype, 84 samples were classified

as Sβ0 thalassemia and 81 as Sβ+ thalassemia. The most frequent beta thalassemia muta-

tions of Sβ0 and Sβ+ were HBB: c.118C>T (Gln40Stop) and HBB c.92 + 6T> C,

respectively.

Discussion

The PyS proved to be satisfactory for large-scale confirmatory testing of hemoglobin muta-

tion. Moreover, with this study we were able to describe the most common β+ and β0 muta-

tions in SCD patients with Sβ-thalassemia in a large multi-institutional SCD cohort in Brazil.

Introduction

Sickle cell disease (SCD) is an inherited red blood cell disorder in which at least one of the

HBB genes has a Glu6Val mutation. When both genes are mutated (SS) the individual demon-

strates a severe form of the disease typically called sickle cell anemia (SCA). The coinheritance

of HbS with other abnormal β-globin chain variants can also cause SCD [1–3].The most com-

mon mutations are sickle-hemoglobin C disease (HbSC) and sickle β-thalassemia (Sβ+ thalas-

semia and Sβ0 thalassemia). Mutations designated as β0-thalassemia are associated with no

normal hemoglobin A production, therefore clinical symptoms of Sβ0 thalassemia are typically

as severe as SS and also usually classified as sickle cell anemia [4–6]. Mutations designated as

β+-thalassemia are associated with variable levels of normal hemoglobin A.

The diagnosis of SCD is made by hemoglobin assays such as high-performance liquid chro-

matography (HPLC), isoelectric focusing, cellulose acetate electrophoresis and citrate agar

electrophoresis. Those assays are easy to perform and used in large scale newborn screening in

many countries including Brazil. The tests however may not easily differentiate Sβ0 thalassemia

from SS, and in this case HBB gene sequencing is necessary [7,8].

In 2013, a large multi-center cohort was established in Brazil to characterize clinical out-

comes in the Brazilian SCD population under the National Heart Lung and Blood Institute

Recipient Epidemiology and Donor Evaluation Study -III (REDS-III) program [9]. The geno-

type of the participants was defined by each site was based on HPLC measurement of variant

hemoglobins, however the results were classified differently by each site. A genotype confirma-

tion based on DNA was necessary to ensure standardized classification of SCD genotype for

the research.

Because the HbS and HbC mutations are separated by only one nucleotide, it is not easy to

develop specific probes for real time PCR [10,11]. We describe here a pyrosequencing tech-

nique (PyS) that was developed to confirm the SCD genotype for participants in the REDS-III

Brazil SCD study. The technique was validated using Sanger sequencing of the HBB gene as

the gold standard. This approach also allowed us to describe the most common HBB muta-

tions in patients classified as Sβ0 thalassemia and Sβ+ thalassemia.

Pyrosequencing for confirmation of hemoglobin mutation
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Materials and methods

Samples

This study was performed using samples collected for the REDS-III Brazil SCD cohort study

(9) eligible participants were randomly selected that included institutions in four Brazilian

states: São Paulo (Hospital das Clı́nicas), Minas Gerais (Hemominas), Rio de Janeiro

(Hemorio) and Pernambuco (Hemope).

The study was approved by the local ethical review committee of participating institutions,

namely, the Pro-Sangue foundation, Hemominas foundation, Hemope foundation and

Hemorio blood bank. Also, the study was approved by the REDS-II collaborating centers

(Blood Systems Research Institute/University of California at San Francisco, San Francisco,

CA) and data-coordinating center (Westat, Inc.) in the United States.

The samples were collected in an EDTA tube, centrifuged at 3500rpm, and plasma was sep-

arated from cells. Both components were frozen and shipped to the central laboratory at the

University of Sao Paulo for further testing.

DNA extraction was performed using the QIAsymphony apparatus (Qiagen, Germany)

and the QIAsymphony DNA Mini Kit (Qiagen, Germany), following the manufacturer’s

instructions and protocol.

Pyrosequencing

Primers sequences were designed using the Pyromark Assay by Design software as follows:

Forward 5’ATTGCTTACATTTGCTTCTGACAC3’, Reverse 5’ACCAACTTCATCCACGTTC
AC3’, targeting the same regions proposed by Sutton, Bouhassira [12]. PCR was performed

with the PyroMark PCR Kit (QIAGEN) using 100 ng / μL of DNA according to the manufac-

turer’s protocol. The PCR product was used for the pyrosequencing assay with PyroMark Q24

Gold Kit (Qiagen, Germany) and subsequently subjected to PyroMark Q24 sequencer (Qiagen,

Germany) using the primer sequence 5’CATGGTGCATCTGACT3’. The analysis was per-

formed using Pyrogram (PQ24 Software) version 2.1 (Qiagen, Germany) as shown in Fig 1.

Sanger sequencing

We used the Sanger sequencing technique for the determination of β thalassemia mutations.

PCR was used to amplify a fragment of 101 base pairs covering the coding region of the Beta

Fig 1. Distribution of SCD patients according to different tests, REDS-III Brazil SCD cohort study.

https://doi.org/10.1371/journal.pone.0216020.g001
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Globin gene, which has approximately 619 base pairs, using the follow primers sequence: (P1)

5’-TCCTAAGCCAGTGCCAGAAG-3’ and the downstream primer (P5) 5’-TCATTCGTCTG
TTTCCCATTC3’[13].

The purified PCR product was subjected to another PCR reaction using the ABI PRISM Big

Dye Terminator Cycle Sequencing Ready Reaction kit (Applied Biosystems Foster City, CA)

following the manufacturer’s protocol. Subsequently, the products of this reaction were ana-

lyzed by an ABI3500 automated sequencer (Applied Biosystems).

The sequences were edited through Sequencher Software (GENECODES) and the results

were classified as β+ or β0 thalassemia mutations previously described in the literature through

an online tool HbVarDatabase, Inc. (http://globin.bx.psu.edu/hbvar/) [14,15].

TOPMed

After establishment of the cohort, the REDS-III Brazilian SCD cohort was selected to partici-

pate in the National Heart Lung and Blood Institute Trans-Omics for Precision Medicine

(TOPMed) Program, which generates whole-genome sequencing and other -omics data on

well phenotyped cohorts. The program will integrate -omics data with molecular, behavioral,

imaging, environmental, and clinical data to improve the prevention and treatment of blood

and other disorders [16].

Whole genome sequencing was performed in samples of the REDS-III Brazilian SCD

cohort by sequencing centers to a median depth of 39X using DNA from blood, PCR- free

library construction and Illumina HiSeq X technology (nhlbiwgs.org). These sequences were

utilized in the present research as a means of final confirmation of the SCD genotype in combi-

nation with Sanger sequences. Results of pyrosequencing assay were compared with final SCD

genotype classification.

Results

The REDS-III Brazilian SCD cohort study enrolled 2,793 patients from 2013–2015. A total of

2,749 samples were obtained from the first visit of the enrolled patients. The number of

patients per site classified by their original HPLC results is summarized in Table 1. The center

from Rio de Janeiro (Hemorio) combined SS and Sβ0 thalassemia in the same category, while

the centers from Minas Gerais (Hemominas) combined Sβ0 and Sβ+. São Paulo and Pernam-

buco provided results that classified patients as SS, Sβ0 and Sβ+ separately.

Table 1. Hemoglobin results provided by each center using High-performance liquid chromatography (HPLC) in different participant states, REDS-III Brazil SCD

cohort study.

Rio de Janeiro n (%) São Paulo

n (%)

Minas Gerais

n (%)

Pernambuco

n (%)

TOTAL

HbSS 67 (72.0) 909 (64.9) 460 (85.3) 1436(52.2)

HbSC 112 (15.6) 15 (16.1) 452 (32.3) 46 (8.5) 625 (22.7)

HbSβ0 9 (9.7) 10 (1.9) 19 (0.7)

HbSβ+ or HbSβ0 39 (2.8) 39 (1.4)

HbSS or HbSβ0 567 (79.2) 567 (20.6)

HbSβ + 37 (5.2) 2 (2.2) 23 (4.3) 62 (2.3)

Total 716 93 1400 539 2748

HbSS: sickle cell anemia; HbSC: sickle-hemoglobin C disease; HbSβ0: β0 thalassemia; Sβ+ or Sβ0: β + thalassemia or β0 thalassemia; HbSS / HSβ0: sickle-cell disease or

HbSβ0 thalassemia; HbSβ+: HbSβ+ thalassemia.

https://doi.org/10.1371/journal.pone.0216020.t001
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All samples with a heterozygous S (n = 100) results or discrepant results between HPLC

and PyS (n = 168) were submitted to Sanger sequencing of the HBB gene to assign a final geno-

type status. When TOPMed full genome sequencing of the cohort patients became available,

we compared all the results. Twenty samples with discrepant results between REDS-III final

classification and TOPMed classification were repeated using Sanger sequence and a final

genotype was then assigned. Comparison of the PyS results with the final confirmed classifica-

tion of SCD genotype is shown in Table 2. The PyS assay correctly identified 1906 (98.7%) of

the 1930 HbSS and 628 (98.7) of the 636 HbSC samples. Of the 179 remaining samples, PyS

correctly indicated S heterozygosis in 165 (92.2%).

Sanger sequencing allowed us to define the beta thalassemia mutations in the study popula-

tion. The distribution of mutations varied according to the regions studied (Table 3).The most

common mutation was a β0 mutation, HBB: c.118CT(Gln40Stop) [codon 39 (C>T)], in all

sites with exception of Pernambuco, where the β+ mutation HBB:c.92+5G>C [IVS-I-5

(G>C)] was more common. In the state of Rio de Janeiro we identified one rare HBB muta-

tion: HBB:c.75T>A [codon 24 (T>A)], a variant that leads to mild Sβ+ thalassemia.

An overall summary of the original classification made by HPLC at the participating sites,

samples submitted to Sanger sequencing and final REDS-III SCD genotype classification con-

sidering our results compared to whole genome sequencing generated by TOPMed is shown

in Fig 1.

Discussion

There is a need for rapid and precise methods to facilitate the diagnosis of hemoglobinopa-

thies, especially in situations in which conventional testing may not be possible or reliable. For

example only frozen samples, in which hemoglobin based assays are less reliable, were available

for this research study. The ability to differentiate SS from Sβ0 thalassemia is also not always

possible using hemoglobin based assays as nearly all hemoglobin detected is hemoglobin S

with no hemoglobin A present. In the absence of information regarding hemoglobin muta-

tions in parents or other clinical and laboratory testing, DNA based testing is required to

Table 2. Comparison of Pyrosequencing results with final SCD classification, REDS-III Brazil SCD cohort study.

Pyrosequencing

Final SCD Classification HbSS HbSC HbAS TOTAL

HbSS 1903 12 15 1930

HbSC 8 628 636

HbSβ+ 9 72 81

HbSβ0 4 80 84

HbSD 1 6 7

HbS/HPFH 3 3

HbSJ 2 2

S/Quebec-Chori 1 1

S/K-Woolwich 1 1

S/Korle-Bu 1 1

S/Porto Alegre

S/Deer Lodge

1

1

1

1

TOTAL 1934 640 180 2748

HbSS: homozygous hemoglobin S sickle cell disease; HbSC: sickle-hemoglobin C disease; HbSβ0: sickle -β0 thalassemia; Sβ+: sickle-β + thalassemia; Hb S: heterozygous

S HPFH: hereditary persistance of fetal hemoglobin; Samples correctly identified by pyrosequencing are shown in bold

https://doi.org/10.1371/journal.pone.0216020.t002
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confirm the SCD genotype. However, the vast majority of cases would be expected to be homo-

zygous SS and sequencing a large number of samples to separate the two would be labor inten-

sive and cost prohibitive. Pyrosequencing is relatively quick and simple and also allows a large

scale approach to provide timely diagnosis. In the present study we used the pyrosequencing

technique to classify the hemoglobinopathy diagnosis of participants in a large multi-institu-

tional cohort study of SCD by confirming HbSS, HbSC and heterozygous S participants. This

allowed targeted Sanger sequencing only in participants with results not concordant with clini-

cal diagnosis assigned at treating center (n = 165) and in heterozygous S samples (n = 100) for

identification of hemoglobin mutations. The pyrosequencing assay correctly identified 2,699

(98.2%) of the samples and proved to be a satisfactory technique for large-scale testing.

The pyrosequencing technique is a highly reliable tool for the determination of small

regions inside the globin genes, and has the advantage of being a relatively simple technique.

In addition, pyrosequencing is faster and is associated with a lower cost of operation when

compared to other sequencing methodologies[17]. There were 49 samples misclassified by

PyS, mostly due to the low level of the pyrogram peaks, which could be improved by standard-

izing the peak levels below which the batch should be repeated.

In this study we also described the most common β+ and β0 thalassemia mutations among

Sβ thalassemia cohort participants in four states of Brazil. Of the heterozygous S samples con-

firmed by Sanger, 84 were classified as Sβ0 thalassemia and 81 as Sβ+ thalassemia.

The types of beta thalassemia mutations demonstrated in this cohort reflect the genetic

diversity of the study population. The Brazilian population is the result of admixture between

different groups at different time periods; the colonizing Spaniards mixed with the indigenous

Table 3. Classification of beta thalassemia mutations, REDS-III Brazil SCD cohort study.

Mutations Β-Thal. MG PE RJ SP n (%)

HBB:c.118C>T(Gln40Stop)[codon 39 (C>T)] SB0 26(38.8) 6(14.0) 10(23.3) 5(41.7) 47 (28.5)

HBB:c.92+6T>C [IVS- I-6 (T>C)] SB+ 6(8.9) 10(23.3) 7(16.3) 2(16.7) 25 (15.2)

HBB:c.92+1G>A [IVS-I-1 (G>A)] SB0 11(16.4) 4(9.3) 5(11.6) 1(8.3) 21 (12.7)

HBB:c.93-21G>A [IVS-I-110 (G>A)] SB+ 7(10.4) 3(7.0) 5(11.6) 2(16.7) 17 (10.3)

HBB:c.92+5G>C [IVS-I-5 (G>C)] SB+ 1(1.5) 11(25.6) 2(4.7) 1(8.3) 15 (9.1)

HBB:c.-79A>G(-29AG) [(-29A>G)] SB+ 3(4.5) 6(14) 9 (5.5)

HBB:c.92+5G>A [IVS-I-5 (G>A)] SB+ 2(3.0) 1(2.3) 3(7) 1(8.3) 7 (4.2)

HBB:c.315+1G>A [IVS-II-1 (G>A)] SB0 4(6.0) 2(4.6) 6 (3.6)

Htz IVS-II-849 (A>G) SB0 1(1.5) 2(4.6) 3 (1.8)

Htz PolyA, AATAAA>AACAAA SB+ 2(3.0) 2 (1.2)

Htz -88 (C>T) SB+ 2(4.6) 2 (1.2)

HBB:c.–138C>T SB+ 1(2.3) 1 (0.6)

Htz IVSII-839(T>C) Htz IVSII-844 (C>A) SB+ 1(2.3) 1 (0.6)

DELEÇÃO 572het_deIG SB0 1(1.5) 1 (0.6)

HBB:c.321_322insG Htz Cod 106/107(+G) SB0 1(2.3) 1 (0.6)

HBB:c.92+2T>C Htz IVSI-2 (T>C) SB0 1(1.5) 1 (0.6)

HBB:c.75T>TA SB+ 1(2.3) 1 (0.6)

p.Glu7Glyfs SB0 1(2.3) 1 (0.6)

HBB:c.92+2T>G SB0 1(2.3) 1 (0.6)

Htz Stop+4 (C>T) SB+ 1(1.5) 1 (0.6)

No mutation found in the exon 1 and 2� SB+/SB0 1(1.5) 1 (2.3) 2 (1.8)

TOTAL 67 43 43 12 165

� No DNA available for further sequences

https://doi.org/10.1371/journal.pone.0216020.t003
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populations as well as with African slaves during three centuries. Later, immigration from

Spain, Italy, Portugal contributed further to the admixture of the present- day Brazilians [18].

The most frequent mutation in our subjects, HBB:c.118C>T(Gln40Stop) Codon 39 (C>T),

is also the most prevalent Sβ thalassemia mutation in the Mediterranean. It is believed that

codon 39 (C> T) is of Roman origin, and has a high prevalence in Sardinia, mainland Italy,

Spain, Portugal and Tunisia [19]. Different studies also found this mutation to be frequent in

Venezuela [18], Northern Greece [20], Syria [21], and confirmed it in Tunisia [22] and Italy

[23].

The next most common β0 thalassemia mutation in our cohort, IVS-I-1, shows a restricted

geographical distribution in Eastern Mediterranean countries (Syria, Lebanon, Jordan, Pales-

tine and Egypt) [21].

The presence of the IVS-I- 6 mutation, the most common β+ mutation in our cohort,

appears to be a contribution from the Portuguese to the genetic makeup of the population, as

it corresponds to 29.4% of the alleles in β+ mutations in Portugal [18,24].

Our results are in accordance with previous Brazilian studies [24–27]. As expected, consid-

ering the migratory activity of the Brazilian population and ethnic ancestry, the pattern

observed is similar to the Mediterranean populations. Interestingly, a study identifying muta-

tions in 31 Sβ thalassemia patients in the state of Rio Grande do Norte did not identify the

mutation Codon 39 (C>T) that was common in our study and others in Brazil [28]. They

identified 15 (48.4%) patients with the IVS-I-1 mutation, 13 (41.9%) with the IVS- I-6 muta-

tion, 2 (6.5%) with the IVS-I-110 mutation and 1 (3.2%) with IVS-I-5 mutation.

Different from the other states in our study, the most common mutation in the state of Per-

nambuco was IVS-I-5 (G>C). This mutation is very common in Asia, especially in Malaysia

and Indonesia and in several regions of India [29]. In studies conducted by Khan et al. from

2011–2013 in four provinces of Pakistan, the most frequent mutation detected in a total of 63

samples of β-thalassemia was IVS-I-5(G>C) (33.9%)[30]. In India, more than 90% of muta-

tions in beta thalassemia involve IVS1-5 (G >C) [31,32]. Similar to our findings, studies by

Silva and Araujo [33,34] = also identified this mutation in the population of Recife, Pernam-

buco. In the 17th century Recife was an important commercial harbor, it is possible that people

from the Indian subcontinent (Goa) were brought as slaves by the Portuguese to that area [34].

The racial heterogeneity of the immigrant population in a non-endemic country signifi-

cantly increases the spectrum of hemoglobinopathy mutations and their combinations

found in individuals, making the provision of a molecular diagnostic prenatal diagnosis ser-

vice more challenging. With the testing algorithm described, it was possible to determine

the spectrum of Sβ thalassemia mutations and their combinations in a Brazilian SCD popu-

lation. It is important to determine the correct mutations for genetic counseling and to

identify patients potentially eligible for new drugs or gene therapy trials that may be avail-

able for targeted populations [35].

In conclusion, the pyrosequencing technique is a highly reliable tool for the classification of

SCD and is suitable for large-scale testing to identify hemoglobin S (homozygous or heterozy-

gous carriers) and C mutations. This allows targeted hemoglobin sequencing in a limited num-

ber of patients, facilitating proper diagnosis when conventional techniques may have limited

ability and ensuring proper hemoglobinopathy diagnosis which is essential for correct screen-

ing and treatment strategies for patients with SCD.
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